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A theoretical analysis is made of the effect of the stream parameters at the exit cross sec-
tion of an annular nozzle on the flow characteristics of a swirled jet and on its form.

Data of experimental studies of swirled and unswirled jets escaping from relatively thin annular slots
are presented in [1-3]. The jets propagated either in a practically unbounded space or in a half-space, i.e.,
in the latter case the nozzle was mounted in a wall normal to the axis of symmetry of the jet. An analysis
of these experimental data, as well as of the results of studies performed by the author of the present
article, shows that when the stream is sufficiently uniform along the perimeter of the nozzle a jet propagat-
ing in a space bounded by a wall takes on one of two stable forms depending on the parameters of the stream
at the exit from the nozzle, namely: either the jet closes up to a certain distance from the nozzle or,
spreading out, it borders on the wall and then propagates in the form of a semibounded fan jet. The main
parameters determining the form of the jet are the angle of taper and the amount of swirling of the jet at
the exit from the annular nozzle. Flow of the hollow annular jet type, i.e., a jet whose inner cavity is in
direct contact with the surrounding medium, proved to be unstable in the case of a semi-infinite space. A
hollow annular jet does occur when the jet propagates in an unbounded space, but in this case the half-aper-
ture angle of the jet, i.e., the angle between the direction of the main stream and the axis of symmetry of
the jet, cannot assume a value less than 60-65° at distances greater than one to two mean nozzle radii.

In the present article an attempt is made to determine through calculation the critical parameters of
the stream at the exit from an annular nozzle for which the transition occurs from one form of a jet prop-
agating in a semi-infinite space into the other. In addition, equations are obtained permitting the calcula-
tion of the flow in a hollow annular jet propagating in an unbounded space.

Despite the fact that the experimental data indicate the absence of flow in the form of a hollow annular

jet in the case of a semi-infinite space, such a jet is theoretically possible if the condition of equilibrium

in the direction perpendicular to the main stream is satisfied for it, and the half-aperture angle of the jet
approaches a constant value with greater distance from the nozzle. At the same time the equilibrium of
such a jet is unstable and upon the smallest disturbances the jet changes into one of the stable forms de-
scribed. Thus a hollow jet satisfying the indicated requirements is a transitional form of flow between a

jet which closes up and a jet which flows out along the wall. The stream parameters at the exit from an
annular nozzle for which this transitional form of flow is realized will be the critical parameters.

So, in order to determine the critical stream parameters in the exit cross section of a nozzle we will
examine the flow in a hollow annular jet. Let us introduce an orthogonal curvilinear coordinate system
X, ¥, ¢, where x is measured from the nozzle along the contour of a meridional cross section of the surface
which is the geometrical locus of points with the maximum values of the longitudinal velocity component in
cross sections of the jet, the y axis is directed along the normal to the contour, and the angle ¢ is measured
about the axis of symmetry of the jet (Fig. 1). In the Reynolds equations for an incompressible fluid written
in these coordinates with allowance for the axial symmetry and steadiness of the flow in averaged values we
discard, as is generally done in studies of jets, the pulsation terms of the form <u'?>, <w'?>, <u'w'> and
the terms due to the molecular viscosity. As a resulf, the system of equations describing the flow in an
annular jet can be written in the form
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Fig. 1. Diagram of a hollow annular jet.
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where 7, = 0<—u'v'>; Ty =p < ~w'v'>; ¢ ando are the half-aperture angle and the angle of curvature of the
line of maximum longitudinal velocities.

We shall designate the characteristic size for the longitudinal coordinate as s and the characteristic
size in the transverse direction as §, and then because of the jet nature of the flow 4/s is a small value.
We will assume that the values of ry, and 1/c are of the same order as s. By estimating the terms in
Egs. (1)-(4) by the usual means and discarding those containing a small factor of the type /s, 6/rm, or
od to more than zeroth power we obtain a system of equations describing the flow in the jet in the null
approximation:

{18 -+ % (rpuvy —wsina = ?1 7,7 {5}
0 : 0 n 1 0 2
" (ros uw) + 5 (rinvw) = — (P Tw), (6)
b d '
rpld) -+ ———(r,0) = 0.
P» (rpt) 3 (rm0) )

Thus, after this estimate the second equation of system (1)-(4) drops out of consideration and the
pressure is taken as constant in the entire region of the jet in the null approximation.
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As the boundary conditions with respect to the coordinate y for the system of equations (5)-(7) we take

t=w=0 at =y =0 at y=0. (8)

ou
"oy
Suppose ug = Uy(x, ¥), wy = wolx,y)' is the solution of system (5)-(7) with the boundary conditions (8).
It is clear that the solution obtained for the region of the jet where y = 0 will coincide with the solution for
the region with y = 0 except for the sign.

Let us return to Eq. (2) and retain in it the terms of first order of smallness with respect to &/s,
6/1yy,, and 00, so that we will have

d N
Urmuﬁ—-wgcosa=——_r—m—a!;—(17+9<.v 2) (9)
We integrate Eq. (9) across the jet, and since the pressure difference at the boundaries of the jet is
a value of second order of smaliness we obtain

Yz
or,,Us (x) j‘ ( [l]t"
0

Y1

Equation (10) is the condition of equilibrium of the jet in the transverse direction, obtained in the
first approximation, and in conjunction with the solution of system (5)-(7) it can serve to determine the de-
pendence ry, (x) in this approximation.

5 Yz w 2 I
) dy — cos W2 (x)jv ( Wo ) dy =0, (10)
0
Y1

It is known that in swirled jets the rotational component of the velocity decreases faster than the
longitudinal component. Consequently, one must take into account the terms of the next or second order
of smallness in Eq. (2) to obtain the condition of equilibrium of the jet at large distances, as well as for the
case of ungwirled jets. But then Egs. (1), 3), and (4) must be solved with allowance for the terms of sec~
ond order of smallness.

We shall assume that the difference (uy/U,) —(w,/W,) is a small value, and then it follows from a com-
parison of Eqs. (9) and (10) thatthevalue [(p — p.)/p] <V'? > ig of the second order of smallness in the entire
region of the jet. Thus, the allowance for terms of first order of smallness in Egs. (1), (3), and (4) comes
down to allowance for the effects of transverse and longitudinal curvature in a linear approximation. The
effect of the curvature on any parameter of the jet in the region where y = 0 will differ only in sign from
the corresponding value in the region with y = 0.

Retaining in Eq. (2) the terms of second order of smallness and integrdting the equation obtained
across the jet, we will have

b
J
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The fact that corrections of the linear approximations for curvature did not enter into Eq. (11) is ex-
plained in the final analysis by the fact that upon integration across the jet these corrections, having a dif-
ferent sign in the regions of y = 0 and y = 0, compensated for one another.

Equation (11) in conjunction with the solution of system (5)-(7) allows one to find the dependence ry,(x)
in the second approximation. In this case the values of p,; and p, are determined through a calculation of the
flow caused by the jet in the surrounding medium, which can be considered as potential flow.

We shall use the method of integral solutions for the solution of the system of Egs. (5)-(7). Let us
examine the main section of the jet, i.e., the section where the potential core of the jet is completely dif-
fused. We assume that the profiles of the longitudinal and rotational velocity components are similar in
different cross sections of the main part of the jet, and also that they are similar to each other. Then one
can write

uo = UO (x) * f(TI)’ wo = WO (x) ¢ f('rl)a (12)
where 1 = xy/ 0y(x); 04(x) is the half~width of the jet and () is an assigned function.
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For the determination of the functions Uy = Uy(x), Wy, = Wy (x), and § = §,(x) three integral relations
are required, the first two of which can be obtained by direct integration of Egqs. (5) and (6) across the jet.

To obtain the remaining relation we transform Eq. (5), drawing on (7) and taking into account that dry,/9x =
sinc, to the form ‘

d . .. 0
P (ratt’y 4 %

dr,, 0 (7, 21: ou
ay m u p u ay'

() — 20 -2, (13)
Y

We can assign the turbulent friction 7, following Loitsyanskii [4], by the following expression:

du \? dw \? Ou
T, = pcil? l/ ( ) ( ) . 14
p oy + 5 % (14)

We take the mixing length! as constant across the jet and proportional to 6y, and by analogy with the
"new" hypothesis of Prandtl [5] we make the approximate substitution
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0

These assumptions and allowance for (12) allow us to reduce (4) to the form

2 W, \* df
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Let us integrate (5), (6), and (13) across the jet and apply (12) and (15). As a result we will have
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Let us introduce the new dependent variable
G = 2npa,r,,Us 8. (20)
From Eq. (17) it is easy to find that
2 L?
Wyby = ————.
o 2npa1rfnG 1)

Substituting (21) into Eq. (16) and integrating the equation obtained, we will have

R (22)

rlTl

Let us define G{x;) = K and introduce the swirl parameter

Q:

wh =r, )
erer, =1r_(x

’ t m el
Krt

Now determining the constant of integration in (22), we obtain

2 12
( r !
G=K[1792(1— ; )] . (23)

Tm
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It follows from a comparison of Eqs. (17), (20), and (23) that

2t -2 o]
= = 14+ Q] — —3 . (24)
( U, 7% G I + I o
Let us turn to Eq. (18). Using (20) and (24) this equation can be reduced to the form
dUy + o, () Uy + o, (x)iUg =0, (25‘)(
where
_—
o (¥) = — dingG :ma(x)=%rml/l+( - ) :
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Integrating (25) with the help of the substitution A; = 1/ U%, we will have
2\ e
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We can find the integration constant C from the condition Uy = Upat x= x¢.

By performing simple transformations of Egs. (20), (24), and (26) we obtain the desired functions in
the form

X
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Let us analyze the solution (27)-(29) at large distances from the nozzle with the condition that the
half-aperture angle of the jet differs from zero, i.e., rp; — © as x — < and, in addition, ¢ — 0 and o ~ow
as x —~ . Then at large distances from the nozzle the coordinate x is equivalent to R, where R is the
radius in the spherical coordinate system R, 6, ¢ (Fig. 1) while d/dx = d/dR. It follows from Eqs. (27)-(29)
that
1 1 - 2q4

Wy, 6=
R R ¢ a,

Uy ~ R as: x—o0. (30) - -

The asymptotic dependences (30) make it possible by using the results of [6, 7] to find the flow induced
by the jet in the surrounding medium at large distances from the nozzle. Drawing on the indicated works,
for a jet propagating in a half-space we will have

By B, (1 —cos6)
Up = —~— Ug=—"——-" 9 3
R=—"g > %= Rsne =
31
4 B, - B,cos6 for 0> a @)
RETTR T T Reng T

We can find the integration constants B, and B, from the condition that the increment in the volumetric
flow rate Q through a cross section of the jet occurs due to the inflow from regions of the potential flow
under consideration. Then in order to somewhat increase the accuracy of the calculation we take into
account the finiteness of the width of the jet, leaving in force the result obtained in the null approximation
indicating that the jet ejects the same amount of fluid from the inner and outer cavities. We can then write

1 dQ 1 dQ (32)

= . , Uy = - . ,
o1 47 R sint (Coo — Voo) dR 2 47RSIN (Ctoo - Yoo) dR
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Fig. 2. Dependence of half-aperture angle a4 on the value of the constant
# for a semi-infinite space (o« , deg; n is a dimensionless value).

Fig. 3. Connection between critical values of 8, and ay for h = 0.18 (8n,
oy, deg): 1) n =0.011; 2) 0.015.

where Yo is the angle of flare of the boundaries of the jet in the distant cross sections, with

db L 2na
o = aretg—2 = arctg =2, 33
¥ & dR ¢ a, (®3)

Let us write the equations which follow from geometrical considerations:
Uy = Ugy COS Yoo — Uy SIN Yoo, Up = tgy COS Yoo = Ly SMl Yoo} (34)

. . 35
Uy = gy €OS Yoo - Uy SIN Yoo, Uy = Uy COS Yoo — tgy Sl Yeo- (35)

Comparing (32) with Eqs. (34) and using (31), we find

1 4, I 4o 36)

e 4 (1 — cos o) dR % 4mcos 0w dR

Knowing the flow induced by the jet in the surrounding medium, we can analyze the condition of equili-
brium (11), which at large distances from the nozzle takes the form

PrmlPe g 2 Pam P 2 (37)
p p
Using the Bernoulli equation, in place of (37) we will have

2 2 2 2 .
Uy — Uy = Us — Us. (38)

Substituting Egs. (31), (35), (34), and (36) into Eq. (38), we find that an equilibrium hollow jet with a
constant half-aperture angle is possible if the angle o, satisfies the following equation:

COS Qs SN (oo + Poo) P €0S 20l 39)
[ (COS Yoo ~— COS Tleo) SiM (Co— Yoo) 2 [1—c0s (tteo—7Yo0)] COS (aao*i—‘}’oc_:) )

By way of illustration, by assigning for f(n) a dependence of the type f(n) = 1-61% + 87°—3n%[7], we can
find, in accordance with (19), the values of the coefficients @, = 0.400, @, = 0.232, and a; = 1,371; then from
{33) we have Yo = arctan1l.82r. The solution of Eq. (39) for different w is presented in Fig. 2.

This analysis of the solution at large distances from the nozzle thus allows one to conclude that the
stream parameters at the exit from an annular nozzle will be critical in the case when the half-aperture
angle a = arcsin (dry,/dx), with the dependence T (X) calculated by Eq. (11), approaches a constant value,
determined through the solution of Eq. (39), with greater distance from the nozzle.
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In order to calculate the curve ry,(x) by Eq. (11) one must know, in addition to the functions already
determined, the laws of flow in the jet at its initial cross section and the laws of the induced flow in the
region close to the nozzle.

Without dwelling in detail on the calculation of the initial cross section, we only note that by taking the
profiles of the velocity components in the potential core as uniform in each cross section and using the
Bernoulli equation for this region, while remaining for the rest within the framework of the assumptions
adopted in the calculation of the main section, and using similar methods, one can obtain calculating func-
tions in explicit form for the unknown parameters of the jet,

Since the effect of the pressure drop at the boundaries of the jet is a correction to the effect of the
centrigual forces, this drop, and consequently the flow induced by the jet in the regions close to the nozzle,
can be analyzed approximately. In particular, in the inner cavity of the jet one can assume, in analyzing the
flow in the cylindrical coordinate system, r, z, ¢ (Fig. 1), that the profile uy is uniform in a cross section
z = const, while in the outer cavity the profile u,. is uniform at a surface r = const. These assumptions
permit an easy calculation of the pressure drop at the boundaries of the jet.

By reducing the calculating functions at the initial and main cross sections to dimensionless form
one can find that the determining parameters at the exit from the nozzle are the angle of taper ap of the
jet at the exit cross section (Fig. 1), the relative width h = 4(D—d)/ (D + d)cos e of the annular slot, and
the swirl parameter & = rLy/ (D + d)Kp calculated from the momentum, the principal angular momentum,
and the mean radius of the exit cross section of the nozzle. Here the average angle 38, between the direction
of the velocity at the exit from the nozzle and the axis of symmetry of the jet is connected with the value
Qn by the equation 8y = arctanQp. '

Curves calculated by the proposed method for two values of » and reflecting the connection between
the critical stream parameters at the exit from an annular nozzle for a fixed value of h = 0.18 are pre-
sented in Fig. 3. We note that the value » = 0.011 is taken from experimental data on flat jets and un-
swirled fan jets [7]. The region of values of the angle of taper «, and the angle of swirl gy lying below the
curves obtained corresponds to a jet which closes up; the region lying above the curves corresponds to a
jet which flows out along the wall. The shaded region reflects the experimental data of [2] and corresponds
to the values of the angle of taper of the annular nozzle and the angle of turn of the vanes of the swirler
relative to the axis of symmetry of the jet for which a jet was realized which assumed either the form of
a closing-up jet or the form of a jet flowing out along the wall, depending on the external influence. As a
rule, the true angle between the direction of the velocity at the exit from the nozzle and the axis of sym-
metry of the jet is somewhat less than the angle of turn of the vanes, and therefore a comparison of the
results of the calculation with the experimental data of [2] contains a certain arbitrariness. The experi-
mental values obtained by the author of the present article are denoted by triangles in Fig. 3. In this case
the angles oy and B, reflect the true average direction of the stream at the exit from the nozzle for which
a transition from one form of the jet to the other is possible. The satisfactory agreement of the calculated
and experimental data can be noted. '

In conclusion, we note that Eqs. (27)-(29) can be used to calculate the flow in a hollow annular jet
propagating in an unbounded space, particularly for the calculation of a swirled fan jet.

NOTATION

is the coordinate system connected with the jet;

is the cylindrical coordinate system;

is the spherical coordinate system;

are the numerical coefficients;

1» By, C are the integration constants;

is the empirical constant;

are the inner and outer diameters of exit cross section of annular nozzle;
is the dimensionless profile of velocity components in jet;
is the relative width of slot;

are the momenta in jet in direction of main stream;

is the mixing length;

is the principal angular momentum in jet;

is the pressure;

is the pressure in the space into which the jet escapes;
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T is the radius of line of maximum longitudinal velocities;

Qm is the volumetric flow rate through a cross section of the jet;

s is the characteristic size in the longitudinal direction;

u, v, w are the time-averaged velocity components along the x, y, and ¢ axes;

u', v, w are the pulsation velocity components;

Up, Uy . are the velocity components along r and z axes;

URs Ug are the velocity components along R and § axes;

Us. W are the maximum values of velocity components uy and wy;

o, 0 are the half-aperture angle and curvature of line of maximum longitudinal veloci-
ties;

3 is the angle of swirl;

Qo Yoo are the half-aperture angle of jet and angle of flare of boundaries of jet in cross
sections distant from the nozzle;

6 is the characteristic size in transverse direction;

g is the half-width of jet;

1 is the dimensionless coordinate;

N is the jet turbulence constant;

) is the density of the fluid;

Ty Tw are the Reynolds shear stresses in directions of x and ¢ axes;

D! is the symbol of time averaging.

Subscripts and Superscripts

n refers to parameters at the exit from the nozzle;
t refers to parameters in the cross section of the transition from the initial section to the main section;
0  denotes the null approximation;

1,2 refer to the inner and outer boundaries of the turbulent region.
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