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A theoret ical  analysis is made of the effect of the s t r eam paramete r s  at the exit c ro s s  s e c -  
tion of an annular  nozzle on the flow charac te r i s t i c s  of a swirled jet  and on its form. 

Data of experimental  studies of swirled and unswirled jets escaping from relat ively thin annular  slots 
are presented in [1-3]. The jets propagated ei ther  in a pract ica l ly  unbounded space or in a hal f -space ,  i . e . ,  
in the lat ter  case the nozzle was mounted in a wall normal  to the axis of symmet ry  of the jet. An analysis  
of these experimental  data, as well as of the resul ts  of studies per formed by the author of the present  
ar t ic le ,  shows that when the s t r eam is sufficiently uniform along the pe r ime te r  of the nozzle a jet propagat-  
ing in a space bounded by a wall takes on one of two stable forms depending on the pa rame te r s  of the s t ream 
at the exit f rom the nozzle,  namely:  ei ther  the jet c loses  up to a cer ta in  distance from the nozzle or ,  
spreading out, it borders  on the wall and then propagates in the form of a semibounded fan jet. The main 
pa ramete r s  determining the form of the jet are  the angle of taper  and the amount of swirling of the jet  at 
the exit f rom the annular nozzle. Flow of the hollow annular jet type,  i.e., a jet whose inner cavity is in 
direct  contact with the surrounding medium, proved to be unstable in the case of a semi-infini te  space.  A 
hollow annular jet does occur  when the jet propagates in an unbounded space,  but in this case the ha l f -aper -  
ture angle of the jet, i.e., the angle between the direct ion of the main s t r eam and the axis of s y m m e t r y  of 
the jet, cannot assume a value less  than 60-65 ~ at distances g rea te r  than one to two mean nozzle radii .  

In the present  ar t ic le  an attempt is made to determine through calculation the cr i t ical  pa ramete r s  of 
the s t ream at the exit f rom an annular nozzle for  which the transit ion occurs  f rom one form of a jet  p rop-  
agating in a semi-infini te  space into the other. In addition, equations a re  obtained permit t ing the calcula-  
tion of the flow in a hollow annular jet propagating in an unbounded space. 

Despite the fact that the experimental  data indicate the absence of flow in the form of a hollow annular 
jet in the case of a semi-infini te  space,  such a jet is theoret ical ly  possible if the condition of equilibrium 
in the direction perpendicular  to the main s t r eam is satisfied for  it, and the hal f -aper ture  angle of the jet  
approaches a constant value with g rea te r  distance from the nozzle.  At the sgme time the equilibrium of 
such a jet  is unstable and upon the smal les t  dis turbances  the jet changes into one of the stable fo rms  de- 
scribed.  Thus a hollow jet satisfying the indicated requirements  is a t ransi t ional  form of flow between a 
jet which closes up and a jet which flows out along the wall. The s t ream pa rame te r s  at the exit f rom an 
annular nozzle for which this t ransi t ional  form of flow is realized will be the cr i t ical  pa ramete r s .  

So, in o rde r  to determine the cr i t ical  s t r eam paramete r s  in the exit c ross  section of a nozzle we will 
examine the flow in a hollow annular jet. Let us introduce an orthogonal curvi l inear  coordinate sys tem 
x, y, ~, where x is measured  from the nozzle along the contour of a meridional  c ro s s  section of the surface 
which is the geometr ica l  locus of points with the maximum values of the longitudinal velocity component in 
c ro s s  sections of the jet, the y axis is d i rected along the normal  to the contour,  and the angle r is measured  
about the axis of s y m m e t r y  of the jet  (Fig. 1). In the Reynolds equations for  an incompressible  fluid written 
in these coordinates with allowance for the axial symmet ry  and steadiness of the flow in averaged values we 
discard ,  as is general ly  done in studies of jets ,  the pulsation t e rms  of the form < u '2 >, <w '2 >, < u 'w'  > and 
t h e t e r m s  due to the molecular  viscosi ty .  As a result ,  the sys tem of equations descr ibing the flow in an 
annular jet  can be written in the form 
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Fig .  1. D i a g r a m  of a hollow a n n u l a r  je t .  
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whe re ~'u = O < - u ' v ~ > ;  Tw =P < - w ' v ' > ;  a a n d a  a r e  the h a l f - a p e r t u r e  angle  and the angle of c u r v a t u r e  of the 
l i n e  of  m a x i m u m  l o n g i t u d i n a l  v e l o c i t i e s ,  

We sha l l  des igna te  the c h a r a c t e r i s t i c  s i ze  for  the long i tud ina l  coo rd ina t e  a s  s and the c h a r a c t e r i s t i c  
s ize  in the t r a n s v e r s e  d i r e c t i o n  a s  8, and then be c a use  of the j e t  n a t u r e  of the flow 5 / s  is a s m a l l  va lue .  
We wil l  a s s u m e  that  the va lues  of r m and 1/r  a r e  of the s a m e  o r d e r  as  s. By e s t i m a t i n g  the t e r m s  in 
Eqs .  (1)-(4) by the usual  m e a n s  and d i s c a r d i n g  those  con ta in ing  a s m a l l  fac tor  of the type 5 / s ,  6 / r  m,  or  
o6 to m o r e  than ze ro th  power  we ob ta in  a s y s t e m  of equa t ions  d e s c r i b i n g  the flow in the je t  in the nu l l  
a p p r o x i m a t i o n :  

(rmu ~) -',- + (r.#v) - -  ~ sin ct -- 1 0 (r~?c.), (5) 
Ox p Oy 

Ox (r,,uw) , ~ (r;, vw) -- ,o Oy 

Ox G,u) + + (r,,v) = O. (7) 

Thus ,  a f t e r  this  e s t i m a t e  the second  equa t ion  of s y s t e m  (1)-(4) d rops  out of c o n s i d e r a t i o n  and the 
p r e s s u r e  is taken as  c o n s t a n t  in the e n t i r e  r eg ion  of the je t  in the nu l l  a p p r o x i m a t i o n .  
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As the boundary conditions with respec t  to the coordinate y for the sys tem of equations (5)-(7) we take 

u =  w =  O a t  y = yl.2, au = 0  a t ~ y = 0 .  (8) 
Oy 

Suppose u 0 = u0(x, y), w 0 = w0{x,y) ~ is the solution of sys tem (5)-(7) with the boundary conditions (8). 
It is c lea r  that the solution obtained for the region of the jet where y - 0 will coincide with the solution for  
the region with y -<-< 0 except for  the sign. 

Let us re turn  to Eq. (2) and retain in it the t e r m s  of f i r s t  o rde r  of smal lness  with respec t  to 6/s, 
5 / r  m, and a6, so that we will have 

crmu2o - -  w2o cos a = r m 0 (p + P ( v'" ) ). (9) 
�9 p 0y 

We integrate Eq. (9) ac ross  the jet ,  and since the p re s su re  difference at the boundaries of the jet  is 
a value of second order  of smal lness  we obtain 

Y~ Ym 

(1 '0 )  
vo / ~ - 0  ) ay=~ 

Yl Yl 

Equation (10) is the condition of equil ibrium of the jet in the t r ansver se  direct ion,  obtained in the 
f i rs t  approximation, and in conjunction with the solution of sys tem (5)-(7) it can serve  to determine the de-  
pendence r m (x) in this approximation. 

It is known that in swirled jets the rotational component of the veloci ty dec reases  fas te r  than the 
longitudinal component. Consequently, one must  take into account the t e r m s  of the next or  second order  
of smal lness  in Eq. (2) to obtain the condition of equilibrium of th'e jet  at  large dis tances,  as well as  for the 
case of unswirled jets.  But then Eqs. (1), (3), and (4) must  be solved with allowance for  the t e rms  of sec -  
ond order  of smal lness .  

We shall ass ume that the difference (u0/~ 0) -(w0/W 0) is a s mall  value, and then it follows f rom a com-  
parison of Eqs. (9) and (10) that the value [(p - p J / p ]  <v'Z > is of the second o rde r  of smal lness  in the entire 
region of the jet. Thus, the allowance for t e rms  of f i rs t  o rder  of smal lness  in Eqs. (1), (3), and (4) comes  
down to allowance for the effects of t r ansver se  and longitudinal curvature  in a l inear  approximation. The 
effect of the curvature  on any pa rame te r  of the jet in the region where y - 0 will differ only in sign from 
the corresponding value in the region with y <- 0. 

Retaining in Eq. (2) the t e rms  of second order  of smal lness  and integrating the equation obtained 
ac ross  the jet, we will have 

Y~ Ys 

Yi 

The Ne t  that cor rec t ions  of the l inear  approximations for  curvature  did not enter  into Eq. (11) is ex- 
plained in the final analysis  by the fact that upon integration ac ross  the jet these cor rec t ions ,  having a dif-  
ferent sign in the regions of y ->- 0 and y -< 0, compensated for  one another. 

Equat ion (11) in conjunction with the solution of system (5)-(7) allows one to find the dependence rm(X) 
in the second approximation.  In this case the values of Pl and P2 are  determined through a calculation of the 
flow caused by the jet in the surrounding medium, which can be considered as potential flow. 

We shall use the method of integral solutions for the solution of the sys tem of Eqs. (5)-(7). Let us 
examine the main section of the jet, i .e.,  the section where the potential core of the jet is completely dif-  
fused. We assume that the profiles of the longitudinal and rotational velocity components are  s imi la r  in 
different c ross  sections of the main par t  of the jet, and also that they a re  s imi l a r  to each other.  Then one 
can write 

u o = U o ( x  ) �9 f ( ~ ) ,  wo = W o ( X  ) �9 f (n ) ,  (12)  

where ~ = ~:Y/5o(X); 5o(X) is the half-width of the jet and f(~) is an assigned function. 
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F o r  the de te rmina t ion  of the functions U 0 = U0(x), W 0 = W0(x), and 50 = 50(x) three  in tegra l  re la t ions  
a r e  requi red ,  the f i r s t  two of which can be obtained by d i r ec t  in tegra t ion of Eqs.  (5) and (6) a c r o s s  the jet .  
To obtain the remain ing  relat ion we t r a n s f o r m  Eq. (5), drawing on (7) and taking into account  that 0rm/0X = 
s ina ,  to the f o r m  

0 (rmu3) + 0 (rmu~v)__2w~u dr m 2 0 (rmu%) 2 Ou (13) 
_ _  - - ~  ~ �9 - -  T U - - .  

Ox ~ - V  dx p Oy p Oy 

We can ass ign  the turbulent  f r ic t ion 7 u, following Loi t syanski i  [4], by the following express ion :  

1//( 0 /2 o. (14) 
xu=pc~12 k Oy ] ~ Oy ) Oy 

We take the mixing length/  as constant  a c r o s s  the je t  and propor t iona l  to 5 0, and by analogy with the 
"new" hypothesis  of P rand t I  [5] we make  the approx imate  substi tut ion 

\ Oy ] 6 0 

These  a s sumpt ions  and allowance fo r  (12) allow us to reduce (4) to the fo rm 

T ~ = x p U o v I + k  Uo ] dq (15) 

Let us in tegra te  (5), (6), and (13) a c r o s s  the jet  and apply (12) and (15). As a resu l t  we will have 

d (r,.U~6oa,)_ dr,, Wg6oal = 0, (16) 
dx dx 

r~ UoWo6oal = L , (17) 
2~p 

d dr~ 
(rmU3o6oa2) - -  2 ~ | /  dx cL~ U~176 + 2r,.• - - I  -;- ( W~ ]2 = O, (18) 

k Uo ] 

whe re 

I 1 

S t' a 1 = 2  f.2(vl) dq, a 2 = 2  
0 0 

Let  us introduce the new dependent va r i ab le  

F r o m  Eq. (17) it is easy  to find that 

l 

S ]' [df(n) tin. P (n) tin, a. = 2 L - N -  
o 

2 G = 2npalrmUo 6o. 

o L ~ 
W~ 60 

2npalr3mG 

Substituting (21) into Eq. (16) and integrat ing the equation obtained, we will have 

(19) 

(20) 

(21) 

L 2 
G 2 A ~ - - -  

Let  us define G(xt) = K and introduce the swir l  p a r a m e t e r  

.Q _ L 
- -  tKr-- ' where r t = r m (xt). 

Now de te rmin ing  the constant  of in tegrat ion in (22), we obtain 

(22) 

G - - K [ I + ~ ( 1  - rto )]~/2. 
r:. (23) 
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It follows from a compar ison  of Eqs.  (17), (20), and (23) that 

Let us turn to Eq. (18). Using (20) and (24) this equation can be reduced to the form 

dUo + o~ (x) Uo + % (x)U~ = O, 
dx 

whe re 

(24) 

(25) 

oh(x ) = d ln G , % (x) = - -  r V 1  ~ ( L--~- V , 
dx a~ \ rinG } 

Integrat ing (25) with the help of the substitution X l = l/U02, we will have 

x 

K ~9. rt C + rrndx (26) U ~ =  1 §  I ~ 
, l 'm a.~ o 

x t 

We can find the integration constant C from the condition U 0 = U t at x = x t. 

By performing simple transformations of Eqs. (20), (24), and (26) we obtain the desired functions in 
the form 

x 

~ 1 j r,.,~) , (27) U o = [ l §  ' 2 ,/2 ----~--m ) ] ( ~ - t  + 8 n p •  P ,-,/2 

x t 

80 - -  z uo~nPrm"2al 1 "k ~2 ~ 1 rm (28) 

W o -  rt~U~ 1 q-f~ I (29) 
2 

/ 'm  / 'm 

Let us analyze the solution (27)-(29) at large distances from the nozzle with the condition that the 
ha l f -aper ture  angle of the jet differs f rom zero,  i.e., r m ~ ~ as  x --* r and, in addition, a --* 0 and a ~a~o 
as x - -  ~.  Then at large dis tances f rom the nozzle the coordinate x is equivalent to R, where R is the 
radius in the spherical  coordinate sys tem R, 0, (p (Fig. 1) while d/dx = d/dR. It follows from Eqs. (27)-(29) 
that 

1 Wo ~ I " 2aa• U o ~ - ~ ,  -~, ~o - ~ ~ x - + o o .  (30) .  
a 2 ": 

The asymptotic  dependences (30) make it possible by using the resu l t s  of [6, 7] to find the flow induced 
by the jet in the surrounding medium at large dis tances  from the nozzle. Drawing on the indicated works,  
for a jet  propagating in a half-space we will have 

B1 B 1 (I - -  cos 0) 
u R = - - - - ,  Uo for 0<r 

R R sin 0 

u R = _  B~ us= B 2cos0 
- R '  R sin 0 for 0 ~ (Zr162 

(31) 

We can find the integration constants  B1 andB2 from the condition that the increment  in the volumetr ic  
flow rate Q through a c ross  section of the jet occurs  due to the inflow from regions of the potential flow 
under consideration.  Then in order  to somewhat increase  the accuracy  of the calculation we take into 
account  the finiteness of the width of the jet, leaving in force the resul t  obtained in the null approximation 
indicating that the jet ejects  the same amount of fluid f rom the inner and outer  cavi t ies .  We can then write 

I dQ I dQ 
vl = " v~ = , (32) 

4~R sin (a~ - -  y~) dR " 4~Rsin ( ~  -~ 7~r dR 

460 



60 

6g 

#0 

t / / / ~ .  

I 
o o, ol qoz x o 

F~'.2 Fig .  3 

/ /  

~n 

F i g .  2. Dependence  of h a l f - a p e r t u r e  ang le  a ~  on the va lue  of the c o n s t a n t  
fo r  a s e m i - i n f i n i t e  s p a c e  ( a ~ ,  deg;  n i s  a d i m e n s i o n l e s s  va lue) .  

F i g .  3. Connec t ion  be tween  c r i t i c a l  v a l u e s  of fin and a n f o r  h = 0.18 (fin, 
a n , deg) :  1) n = 0.011;  2) 0.015.  

w h e r e  T ~  is  the  ang le  of f l a r e  of the b o u n d a r i e s  of the j e t  in the  d i s t a n t  c r o s s  s e c t i o n s ,  With 

?oo = aretg-d:/~ = arctg 2• 
a s  

(33) 

L e t  us w r i t e  the  e q u a t i o n s  which  fo l low f r o m  g e o m e t r i c a l  c o n s i d e r a t i o n s :  

v~ = uo~ cos ?~ - -  uR1 sin ?~, v 2 = u02 cos ?~ ~- tin2 sin ?~; 

u~ = uR~ cos "f~ -}- u01 sin yoo, us = uR2 cos 7~o - -  tto~ sin ?,~. 

(34) 
(35) 

C o m p a r i n g  (32) with E q s .  (34) and us ing  (31), we find 

1 dQ B2 = 1 dQ (36) 
B x =  4n ( 1 - -  cos a~) d R '  4 ~ c o s a ~ - "  dR 

Knowing the f low induced  by  the  j e t  in the  s u r r o u n d i n g  m e d i u m ,  we can  a n a l y z e  the  cond i t ion  of e q u i l i -  
b r i u m  (11), which  at  l a r g e  d i s t a n c e s  f r o m  the n o z z l e  t a k e s  the  f o r m  

P l - - P ~  ~_v~ P s - - P ~  : v~. (37) 
P P 

Us ing  the B e r n o u l l i  equa t ion ,  in p l a c e  of  (37) we wi l l  have  

2 2 2 
vl - -  u~ --  v2 - -  u2. (38) 

Subs t i t u t i ng  Eqs .  (31), (35), (34), and (36) into Eq.  (38), we find tha t  an  e q u i l i b r i u m  ho l low j e t  with a 
c o n s t a n t  h a l f - a p e r t u r e  ang le  i s  p o s s i b l e  if the  ang le  a ~  s a t i s f i e s  the fo l lowing  equa t ion :  

[ cos ~ sin (~- ?oo).]'=_ cos 2ao~ 
(cos v:-Z ~ ~ )  ~n (--~-- ~,| 2 [1-co~ (~.-v..)l ~os (~..+w.) " (39) 

By way  of  i l l u s t r a t i o n ,  by a s s i g n i n g  f o r  f(~) a d e p e n d e n c e  of the type  f(~) = 1-672  + 8~3-3r/4 [7], we can 
f ind ,  in a c c o r d a n c e  wi th  (19), the v a l u e s  of  the  c o e f f i c i e n t s  a 1 = 0.400, a 2 = 0.232,  and a 3 = 1,371; then  f rom 
(33) we have  Too = a r c t a n 1 1 . 8 2 ~ . .  The s o l u t i o n  of Eq.  (39) fo r  d i f f e r e n t  ~ i s  p r e s e n t e d  in F i g .  2. 

T h i s  a n a l y s i s  of  the  s o l u t i o n  a t  l a r g e  d i s t a n c e s  f r o m  the  nozz l e  thus  a l l ows  one  to  conc lude  tha t  the 
s t r e a m  p a r a m e t e r s  a t  the  ex i t  f r o m  an a n n u l a r  n o z z l e  w i l l  be c r i t i c a l  in the  c a s e  when the h a l f - a p e r t u r e  
ang le  a = a r c  s i n  ( d r m / d x ) ,  wi th  the d e p e n d e n c e  rm(X ) c a l c u l a t e d  by Eq.  (11), a p p r o a c h e s  a c o n s t a n t  v a l u e ,  
d e t e r m i n e d  t h rough  the  s o l u t i o n  of  Eq.  (39), with g r e a t e r  d i s t a n c e  f r o m  the n o z z l e .  
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In o rde r  to calculate the curve rm(x) by Eq. (11) one must  know, in addition to the functions a l ready 
determined,  the laws of flow in the jet at its initial c ross  section and the laws of the induced flow in the 
region close to the nozzle.  

Without dwelling in detail on the calculation of the initial c ross  section, we only note that by taking the 
profi les  of the velocity components in the potential core  as uniform in each c r o s s  section and using the 
Bernoulli equation for  this region, while remaining for  the r e s t  within the f ramework  of the assumptions 
adopted in the calculation of the main section,  and using s imi la r  methods,  one can obtain calculating func-  
tions in explicit form for  the unknown pa rame te r s  of the jet. 

Since the effect of the p re s su re  drop at the boundaries of the jet is a cor rec t ion  to the effect of the 
centrigual forces ,  this drop,  and consequently the flow induced by the jet  in the regions close to the nozzle,  
can be analyzed approximately.  In par t icu lar ,  in the inner cavity of the jet one can assume,  in analyzing the 
flow in the cyl indr ical  coordinate system, r, z, q~ (Fig. 1), that the profile Uz is uniform in a c ross  section 
z = c o n s t ,  while in the outer  cavity the profile u r is uniform at a surface r = coast. These assumptions 
permi t  an easy calculation of the p ressure  drop at the boundaries of the jet. 

By reducing the calculating functions at the initial and main c ross  sections to dimensionless  form 
one can find that the determining pa ramete r s  at the exit f rom the nozzle a re  the angle of taper  a n of the 
jet at the exit c r o s s  section (Fig. 1), the relat ive width h = 4 (D-d) / (D + d)cos c~ n of the annular slot, and 
the swirl pa rame te r  ~2 n = rLn / (D + d)Kn calculated f rom the momentum,  the principal  angular  momentum, 
and the mean radius of the exit c r o s s  section of the nozzle.  Here the average angle fin between the direct ion 
of the velocity at the exit f rom the nozzle and the axis of s y m m e t r y  of the jet is connected with the value 
~n by the equation fin = arc  tan~n.  

Curves calculated by the proposed method for  two values of n and reflecting the connection between 
the cr i t ical  s t ream pa rame te r s  at the exit f rom an annular nozzle for a fixed value of h = 0.18 are  p r e -  
sented in Fig. 3. We note that the value n = 0.011 is taken f rom experimental  data on flat jets  and un- 
swirled fan jets [7]. The region of values of the angle of taper  c~ n and the angle of swirl  ~n lying below the 
curves obtained cor responds  to a jet which c loses  up; the region lying above the curves  cor responds  to a 
jet which flows out along the wall. The shaded region reflects  the experimental  data of [2] and corresponds  
to the values of the angle of taper  of the annular nozzle and the angle of turn of the vanes of the swi r le r  
relative to the axis of symmet ry  of the jet for  which a jet was realized which assumed either the form of 
a closing-up jet or  the form of a jet flowing out along the wall, depending on the external influence. As a 
rule,  the true angle between the direct ion of the velocity at the exit f rom the nozzle and the axis of sym-  
met ry  of the jet is somewhat less  than the angle of turn of the vanes, and therefore  a compar ison of the 
resul ts  of the calculation with the experimental  data of [2] contains a cer ta in  a rb i t r a r i ne s s .  The exper i -  
mental  values obtained by the author of the present  ar t ic le  are  denoted by t r iangles  in Fig. 3. In this case 
the angles a n and 13 n ref lect  the true average direct ion of the s t r eam at the exit from the nozzle for which 
a transit ion from one form of the jet to the other  is possible.  The sa t i s fac tory  agreement  of the calculated 
and experimental  data can be noted. 

In conclusion, we note that Eqs. (27)-(29) can be used to calculate the flow in a hollow annular jet  
propagating in an unbounded space, par t icular ly  for the calculation of a swirled fan jet. 
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N O T A T I O N  

is the coordinate sys tem connected with the jet; 
is the cyl indrical  coordinate system; 
is the spher ical  coordinate sys tem;  
are the numerical  coefficients;  
are  the integration constants;  
is the empir ical  constant; 
are the inner and outer d iameters  of exit c ross  section of annular nozzle;  
is the dimensionless  profile of velocity components in jet; 
is  the relative width of slot; 
are the momenta  in jet in direction of main s t ream;  
is the mixing length; 
is the principal angular momentum in jet; 
is the p ressure ;  
is the pressure  in the space into which the jet escapes ;  
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is the radius of line of maximum longitudinal velocities; 
is the volumetric flow rate through a cross section of the jet; 
is the characteristic, size in the longitudinal direction; 
are the time-averaged velocity components along the x, y, and F axes; 
are the pulsation velocity components; 
are the velocity components' along r and z axes; 
are the velocity components along R and O axes; 
are the maximum values of velocity components u 0 and w0; 
are the ha l f -aper ture  angle and curvature  of line of maximum longitudinal veloci-  
t ies;  
is the angle of swirl; 
are the ha l f -aper ture  angle 'of  jet and angle of flare of boundaries of jet in c ross  
sections distant from the nozzle; 
is the charac te r i s t ic  size in t r ansver se  direction;  
is the half-width of jet; 
is the dimensionless  coordinate; 
is the jet turbulence constant; 
is the density of the fluid; 

are the Reynolds shear  s t r e s se s  in direct ions of x and q axes; 
is the symbol of time averaging. 

S u b s c r i p t s  a n d  S u p e r s c r i p t s  

n r e f e r s  to pa rame te r s  at  the exit from the nozzle; 
t r e fe r s  to pa r ame te r s  in the c ross  section of the transit ion from the initial section to the main section; 
0 denotes the null approximation; 
1, 2 re fer  to the inner and outer  boundaries of the turbulent region. 
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